Site-specific azide-acetyllysine photochemistry on epigenetic readers for interactome profiling.

نویسندگان

  • Babu Sudhamalla
  • Debasis Dey
  • Megan Breski
  • Tiffany Nguyen
  • Kabirul Islam
چکیده

Chemical modifications on DNA, RNA and histones are recognized by an array of 'reader' modules to regulate transcriptional programming and cell fate. However, identification of reader-specific interacting partners in a dynamic cellular environment remains a significant challenge. Herein, we report a chemoproteomic approach termed 'interaction-based protein profiling' (IBPP) to characterize novel interacting partners of potentially any reader protein. IBPP harnesses a photosensitive amino acid introduced into the hydrophobic pocket of a reader module to crosslink and enrich transient interacting partners that are inaccessible to traditional methods. Using bromodomain-containing protein 4 (BRD4) as a paradigm, we engineer an 'aromatic cage' of the bromodomain to introduce 4-azido-l-phenylalanine (pAzF) without compromising its ability to recognize acetylated lysine residues in histone proteins. We establish the binding efficiency, substrate specificity and crosslinking ability of the engineered 'reader' module in biochemical assays. Applying IBPP, we uncovered novel acetylated interacting partners of BRD4, such as transcription factors, expanding on its previously unappreciated role in diverse biological processes. By setting up an azide-acetyllysine photoreaction deep inside the bromodomain aromatic cage as a means to detect protein acetylation, our approach provides a potentially general platform for rapid and unbiased profiling of interacting partners of diverse epigenetic readers whose functions in eukaryotic gene regulation remain convoluted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-directed photoproteolysis of 8-oxoguanine DNA glycosylase 1 (OGG1) by specific porphyrin-protein probe conjugates: a strategy to improve the effectiveness of photodynamic therapy for cancer.

The specific light-induced, non-enzymatic photolysis of mOGG1 by porphyrin-conjugated or rose bengal-conjugated streptavidin and porphyrin-conjugated or rose bengal-conjugated first specific or secondary anti-IgG antibodies is reported. The porphyrin chlorin e6 and rose bengal were conjugated to either streptavidin, rabbit anti-mOGG1 primary specific antibody fractions or goat anti-rabbit IgG s...

متن کامل

Writers and readers of histone acetylation: structure, mechanism, and inhibition.

Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been develope...

متن کامل

Phthalocyanine-sensitized lipid peroxidation in cell membranes: use of cholesterol and azide as probes of primary photochemistry.

Various phthalacyanine (Pc) derivatives of phototherapeutic interest have been shown to be efficient type II (singlet oxygen, 1O2) sensitizers in aqueous and non-aqueous solutions. However, primary Pc photochemistry in biological environments, e.g. cell membranes, has not been studied in a definitive manner. To address this question, we used endogenous cholesterol in the erythrocyte ghost as a ...

متن کامل

AF9 YEATS Domain Links Histone Acetylation to DOT1L-Mediated H3K79 Methylation

The recognition of modified histones by "reader" proteins constitutes a key mechanism regulating gene expression in the chromatin context. Compared with the great variety of readers for histone methylation, few protein modules that recognize histone acetylation are known. Here, we show that the AF9 YEATS domain binds strongly to histone H3K9 acetylation and, to a lesser extent, H3K27 and H3K18 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2017